
Operating Systems 2016/17
Tutorial-Assignment 3

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 3.1: Process Switching

a. What data is stored in a process control block (PCB)? Where is it located?

Solution:
The PCB stores a process’ saved execution context, including its instruction pointer (pro-
gram counter), stack pointer, general purpose registers, and address space information. A
PCB can also contain additional, implementation-dependent information, such as schedu-
ling priorities, open files, and so on. The PCBs are stored as kernel objects to protect them
against unauthorized modifications.

Note that, the information regarding the execution state (i.e., registers etc.) are only valid
for currently NOT running processes.

b. Describe the actions taken by the kernel to perform a context-switch between processes.

Solution:
Basically, a context switch can be implemented by preserving the previous execution state
(context) on the stack and in that process’ PCB, exchanging the stack pointers, and loading
the new state from the new stack and PCB. This is shown in Figure 1.

P1

P2

Kernel

PCB 1 PCB 2

Interrupt/
Exception/
Syscall

Kernel Entry

Return to user

Abbildung 1: Switching from P1 to P2

The context of a process normally consists of all CPU registers, including the instructi-
on pointer (program counter) and stack pointer of the process. In addition to these basic
actions, hardware-dependent actions might be necessary: Switching address spaces can
require to reload a special register, various caches might need to be flushed, . . .

Note that the preempted application is not aware of the preemption.

1

Question 3.2: Threads

a. Explain the terms process, address space, and thread. How do they relate to each other?

Solution:
A thread is an independent entity of execution, representing control flow. A thread resi-
des within an address space. The combination of a thread and its address space is a
(single-threaded) process.

b. Compare the three thread models: One-to-One threads (kernel-level threads), Many-to-
One threads (user-level threads), and Many-to-Many threads (hybrid threads). Point out
advantages and limitations of each thread model.

Solution:

One-to-One: Also known as kernel level threads (KLTs). Most commonly used model to-
day. Each user thread is mapped to exactly one kernel thread. Creating new threads
and switching between threads requires a kernel invocation (high overhead). Model
can leverage multi-processor systems. Performing blocking system calls, blocks the
whole thread in kernel (user- and kernel-part). Other threads are not affected.

Many-to-One: Many-to-One threads, also known as user-level threads (ULTs) are ma-
naged at user level. Their corresponding thread control blocks (TCBs) are located in
user-land. User-level threads execute inside a process (or task) and only the latter is
managed by the OS kernel. There is one process control block in the kernel, thus the
kernel scheduler decides when to run this process as a whole, whatever user-level
thread may be running. ULTs are not known within the kernel, only the single activity
associated with the process (“user-level task”) is known.
Advantages of user-level threads include extremely fast thread management opera-
tions as long as the kernel is not involved. A yield() at user level only requires action
in user land. In contrast, operations on one-to-one threads always require costly (in
terms of CPU cycles) crossings between user and kernel level. Furthermore, if the run-
time offers an adaptive scheduling policy, an application programmer can establish
a scheduling algorithm that optimally fits the particular multi-threaded application
using ULTs. An additional benefit of user-level threads is that one can run a user-
level thread application on each OS platform offering the needed user-level runtime
system, whether the OS knows about kernel-level threads or not.
However, there are also some drawbacks concerning user-level threads: Each blocking
system call blocks the whole application. In a multi-processor system, two user-level
threads of the same application can never run concurrently. For specific scientific ap-
plications this fact can be very limiting. As the kernel-scheduler does not know about
the internal behavior of the task, it may select a multi-threaded task of which only the
idle thread can run, or it may de-schedule a task whose currently running thread has
acquired a lock that is needed by other parts of the system. The scheduling policy of
the kernel can interfere with the scheduling policy at user level, resulting in globally
suboptimal performance.

Many-to-Many : The Many-to-Many thread model (also known as hybrid thread model)
tries to combine the advantages of both pure models. In a hybrid thread model, where
n user-level threads are mapped to m kernel-level threads (n ≥ m ≥ 1), each kernel-
level thread supports one or more user-level threads. This model is expected to require
some interaction between the user-level and the kernel scheduler.
The first advantage of user-level threads still holds: all thread operations that do
not require a kernel entry are still fast, because they are implemented at user level
(e.g., switching between user-level threads that are mapped to the same kernel-level

2

thread). Additional kernel entries are required only for thread operations between
user-level threads that are mapped to different kernel-level threads (e.g., switching
between user-level threads that are mapped to different kernel-level threads).
Again, it is possible to implement a (user-level) scheduling policy that is tailored to the
application’s needs. However, in contrast to the ULT model, the user-level threads on
different kernel-level threads can run in parallel on a multi-processor system.
Distinguishing the hybrid model from ULTs on top of KLTs, the kernel knows that
there is a user-level scheduler in the hybrid model: If a thread executes a blocking
system call, the kernel scheduler informs the user-level scheduler that the current
thread must be blocked but allows the user-level scheduler to select and dispatch a
different, runnable thread. With ULTs on KLTs, the kernel would block the KLT, thus
preventing even runnable ULTs that are assigned to this KLT from being dispatched.
When the system call completes, the kernel-level scheduler again notifies the user-
level scheduler, causing it to unblock (and possibly dispatch) the thread.
The kernel scheduler and the user scheduler may still work against each other, but the
effects are slightly mitigated in the hybrid model due the two schedulers cooperating
with each other.
A drawback of the hybrid thread approach is that it violates the layered structure of
the system: Applications call OS functions (system calls), but now the kernel also calls
application functions (the scheduler). By these upcalls from kernel land “up” into user
land, the ULT property of never being preempted by the user-level scheduler is lost:
The kernel can activate the user-level scheduler at any time, and the scheduler can
then decide whether to preempt the currently running thread or not.

c. Which types of events can trigger a One-to-One thread switch?

Solution:

voluntary: calling yield(), executing a blocking system call (e.g., read())

involuntary: preemption, for example due to

(a) End of time-slice
(b) High priority thread becoming ready
(c) Device interrupt
(d) Exception that cannot be handled immediately
(e) Exception that leads to aborting the causing thread/task (e.g., segmentation vio-

lation, privilege violation)

Keep in mind that the OS does not always run in the background but needs to be invoked
to run. Cases (a) and (b) can only be “detected” after invocation of the OS, which is caused
by an event (e.g., the timer interrupt).

3

d. Which types of events can trigger a Many-to-One thread switch?

Solution:
Most user level thread libraries only support cooperative scheduling: A Many-to-One thread
(user level thread, ULT) is never preempted but must call ult yield() from time to time to
allow other ULTs in the task to make progress.

Involuntary thread switches among ULTs are difficult to implement because all of the abo-
ve events are directed to the kernel, which then would need to return control to a user
level event handler. The problem here is that the kernel cannot simply return to user land
whence it came, but needs to meddle with return addresses so as to “return” to the event
handler, passing the original return address on to user space. Most systems do not support
this kind of exception handling in user land, or support only a limited set of signals (à la
Unix kill).

Blocking system calls, such as sleep, cannot be used to trigger a Many-to-One thread
switch. The kernel is not aware of the user-level threads and simply blocks the whole
process. In contrast to the Many-to-Many model, there is no mechanism that would allow
the other user-level threads to run in the meantime.

e. Discuss the following statement: “Jobs are either I/O-bound or compute-bound. In neit-
her case would user-level threads be a win. Why would one go for pure user-level threads
at all?”

Solution:
Comparing compute-bound applications implemented with pure user-level threads to a se-
quential implementation, no efficiency improvement can be observed: The thread library
will execute the threads sequentially, maybe partially interleaved, on a single CPU.

An I/O-bound application with user-level threads will block as a whole when invoking a
blocking system call (read(), write(), etc.). A workaround would be to use non-blocking
I/O system calls. This design decision, however, needs to be made explicitly as it does not
automatically come with the thread model.

The benefits of user-level threads are not improved performance, but significant improve-
ments of the program structure: Instead of implementing a state machine to manage the
various (potentially parallelizable) tasks/stages of a program, one can just let the thread
library, which is likely to contain a state machine as well, manage them.

As an example, consider an application which comprises several pipelined stages such as
a compiler (i.e., lexer, parser, optimizer, and code generator). An imperative design for the
lexer/parser stage would repeatedly invoke the lexer from the parser to get the next tokens
from the input file. The parser would then need to provide a context for the lexer (e.g., the
current location in the input file) in each call, thus the parser needs to some degree manage
or at least keep the state of a different stage.

A design with user-level threads would instead be based on two strictly separated stages
with a communication channel in-between. In this approach the lexer continuously writes
the next tokens into the channel, managing its state locally on the stack of the user-level
thread. The parser, itself also driven by its own user-level thread, simply reads new tokens
from the channel. A switch from the parser thread to the lexer thread could be performed
voluntarily, for example when the channel is empty. The lexer would then write a certain
amount of new tokens to the channel and yield back to the parser thread.

A multi-threaded design is also a good starting point for future real concurrency in a multi-
processor system: If one is able to produce a concurrent application with ULTs, the next
step to KLTs and hence real parallelism may be less steep.

4

f. The Unix system call fork() creates a new process (child), which is identical to its parent
in most parts. Would it make sense for the new process to also contain copies of all the
parent’s (other) threads?

Solution:
For the thread executing the fork(), the return value of fork() is the child’s process id.
The newly created child process will start running in the fork() system call. It sees a
return value of 0, indicating that it is the child. The code for both parent and child already
existed in the parent process. As such, parent and child are aware of the fork().

If all other threads in the parent were to be duplicated into the child, what would their
state be after the fork()? As they are unaware of the fork() invocation (they might, for
example, be running in a tight loop or be blocked in a system call), it is unclear what the
duplicates’ states should be: Continuing the duplicates where the originals were may lead
to data corruption, because a thread is usually not well prepared for concurrency with (a
copy of) its very self. Copying a thread which is running in kernel mode would be very
difficult and is likely to crash the whole system. For example, consider a thread holding a
global system lock while executing in a critical section.

Another use case of fork() is to create a new process and replace its address space
contents with a new program image using exec() or execve(). Then duplicating all threads
would be of no use.

g. What is the motivation for and purpose of kernel-mode threads?

Solution:
An operating system kernel is only active when an application invoked a system call or
when all applications are blocked (system idle). Certain kernel activities are, however, not
directly related to a system call and thus should not be performed in the context of a sys-
tem call. Doing so would reduce the application’s performance due to unrelated activities.
Instead, these activities are performed by threads inside the kernel that never execute in
user mode. They are often subject to normal scheduling and perform background tasks
such as garbage collection, freeing page frames and swapping them out to disk, calcula-
ting checksums, mirroring disks in a software RAID, or distributing load to other proces-
sors. Even the idle state can be modeled conveniently by a thread (running at the lowest
priority), eliminating the need for checking for the idle condition in the scheduling code.

5

h. Write a small program that creates five threads using the pthread library. Each thread
should print its number (e.g., Hello, I am 4) and the main program should wait for
each thread to exit.

Solution:
To build the program use gcc with the following command line:
gcc pthread.c -lpthread -o pthread

The -lpthread links the pthread library to our sample program. The new threads will be in
the ready state as soon as they are created. It is then up to the scheduler to decide when
to dispatch which thread. The first thread thus might already be running while we are still
creating new threads. You will see in which order the scheduler dispatched the threads in
the output.

#include <stdlib.h>
#include <inttypes.h>
#include <pthread.h>

void∗ greet(void ∗id)
{

printf (”Hello, I am %ld\n”, (intptr t)id);
pthread exit((void∗)0);

}

int main()
{
#define NUM 5

int i ;
// For each pthread, we need to have a pthread t structure that allows us
// to reference the pthread later.
pthread t threads[NUM];

for(i = 0; i < NUM; ++i)
{

// Create new pthread with the greet() function as entry point.
// We pass i as argument to the greet() function.
int status = pthread create(threads + i, NULL,

greet, (void∗)((intptr t) i));
if (status != 0) {

printf (”Error creating thread”);
exit (1);

}
}

// Wait for each thread to exit
for(i = 0; i < NUM; ++i) {

pthread join(threads[i], NULL);
}

return 0;
}

6

